Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340794

RESUMO

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Assuntos
Citoesqueleto de Actina , Actinas , Leishmania major , Parasitos , Profilinas , Animais , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , Cristalografia por Raios X , Leishmania major/citologia , Leishmania major/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Ligação Proteica , Domínios Proteicos
2.
PLoS Pathog ; 20(2): e1012054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416776

RESUMO

The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.


Assuntos
Leishmania mexicana , Leishmania , Parasitos , Psychodidae , Animais , Leishmania mexicana/genética , Ciclo Celular , Divisão Celular , Psychodidae/parasitologia , Mamíferos
3.
Elife ; 122023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162189

RESUMO

Attachment to a substrate to maintain position in a specific ecological niche is a common strategy across biology, especially for eukaryotic parasites. During development in the sand fly vector, the eukaryotic parasite Leishmania adheres to the stomodeal valve, as the specialised haptomonad form. Dissection of haptomonad adhesion is a critical step for understanding the complete life cycle of Leishmania. Nevertheless, haptomonad studies are limited, as this is a technically challenging life cycle form to investigate. Here, we have combined three-dimensional electron microscopy approaches, including serial block face scanning electron microscopy (SBFSEM) and serial tomography to dissect the organisation and architecture of haptomonads in the sand fly. We showed that the attachment plaque contains distinct structural elements. Using time-lapse light microscopy of in vitro haptomonad-like cells, we identified five stages of haptomonad-like cell differentiation, and showed that calcium is necessary for Leishmania adhesion to the surface in vitro. This study provides the structural and regulatory foundations of Leishmania adhesion, which are critical for a holistic understanding of the Leishmania life cycle.


Assuntos
Leishmania , Psychodidae , Animais , Microscopia Eletrônica
4.
Zoolog Sci ; 39(1): 147-156, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35107002

RESUMO

Acoels, belonging to Xenacoelomorpha, are small worms with a relatively simple body plan and are considered a critical clade for understanding the evolution of bilaterians. Despite acoels' importance, however, many undiscovered species are predicted to be present worldwide. Here, we describe a new marine acoel species, Amphiscolops oni sp. nov., based on materials collected from the intertidal and subtidal zones of rocky shores at several localities along the Japanese Pacific coast. The new species is approximately 3 mm long and shows typical characteristics of the family Convolutidae, such as the presence of eyespots, symbiosis with algae, position of the gonopores, morphology of the bursal nozzles, lack of central singlet microtubules in the axonemes of spermatozoa, and funnel-like posture of the anterior end. Based on morphology and the results of molecular phylogenetic analyses, we assign this species to the genus Amphiscolops. Interestingly, these worms show unique behaviors such as swimming by flapping the lateral sides and actively capturing prey by swinging the anterior funnel. Furthermore, they possess a dorsal appendage-a characteristic previously unreported in Xenacoelomorpha-representing an evolutionary novelty acquired by this species.


Assuntos
Estruturas Animais/anatomia & histologia , Sensação , Animais , Masculino , Filogenia
5.
PLoS Pathog ; 16(10): e1008494, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091070

RESUMO

The shape and form of the flagellated eukaryotic parasite Leishmania is sculpted to its ecological niches and needs to be transmitted to each generation with great fidelity. The shape of the Leishmania cell is defined by the sub-pellicular microtubule array and the positioning of the nucleus, kinetoplast and the flagellum within this array. The flagellum emerges from the anterior end of the cell body through an invagination of the cell body membrane called the flagellar pocket. Within the flagellar pocket the flagellum is laterally attached to the side of the flagellar pocket by a cytoskeletal structure called the flagellum attachment zone (FAZ). During the cell cycle single copy organelles duplicate with a new flagellum assembling alongside the old flagellum. These are then segregated between the two daughter cells by cytokinesis, which initiates at the anterior cell tip. Here, we have investigated the role of the FAZ in the morphogenesis of the anterior cell tip. We have deleted the FAZ filament protein, FAZ2 and investigated its function using light and electron microscopy and infection studies. The loss of FAZ2 caused a disruption to the membrane organisation at the anterior cell tip, resulting in cells that were connected to each other by a membranous bridge structure between their flagella. Moreover, the FAZ2 null mutant was unable to develop and proliferate in sand flies and had a reduced parasite burden in mice. Our study provides a deeper understanding of membrane-cytoskeletal interactions that define the shape and form of an individual cell and the remodelling of that form during cell division.


Assuntos
Citoesqueleto/metabolismo , Flagelos/fisiologia , Interações Hospedeiro-Parasita , Leishmania/crescimento & desenvolvimento , Leishmaniose/parasitologia , Morfogênese , Psychodidae/parasitologia , Animais , Membrana Celular , Citocinese , Feminino , Flagelos/ultraestrutura , Leishmania/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
6.
PLoS Genet ; 16(1): e1008585, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961863

RESUMO

Flagella and cilia are evolutionarily conserved cellular organelles. Abnormal formation or motility of these organelles in humans causes several syndromic diseases termed ciliopathies. The central component of flagella and cilia is the axoneme that is composed of the '9+2' microtubule arrangement, dynein arms, radial spokes, and the Nexin-Dynein Regulatory Complex (N-DRC). The N-DRC is localized between doublet microtubules and has been extensively studied in the unicellular flagellate Chlamydomonas. Recently, it has been reported that TCTE1 (DRC5), a component of the N-DRC, is essential for proper sperm motility and male fertility in mice. Further, TCTE1 has been shown to interact with FBXL13 (DRC6) and DRC7; however, functional roles of FBXL13 and DRC7 in mammals have not been elucidated. Here we show that Fbxl13 and Drc7 expression are testes-enriched in mice. Although Fbxl13 knockout (KO) mice did not show any obvious phenotypes, Drc7 KO male mice were infertile due to their short immotile spermatozoa. In Drc7 KO spermatids, the axoneme is disorganized and the '9+2' microtubule arrangement was difficult to detect. Further, other N-DRC components fail to incorporate into the flagellum without DRC7. These results indicate that Drc7, but not Fbxl13, is essential for the correct assembly of the N-DRC and flagella.


Assuntos
Dineínas/metabolismo , Flagelos/genética , Infertilidade Masculina/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Espermatozoides/metabolismo , Animais , Axonema/genética , Axonema/metabolismo , Axonema/patologia , Feminino , Flagelos/metabolismo , Flagelos/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese , Espermatozoides/citologia , Espermatozoides/patologia
8.
Commun Biol ; 2: 226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240264

RESUMO

Calaxin is a Ca2+-binding dynein-associated protein that regulates flagellar and ciliary movement. In ascidians, calaxin plays essential roles in chemotaxis of sperm. However, nothing has been known for the function of calaxin in vertebrates. Here we show that the mice with a null mutation in Efcab1, which encodes calaxin, display typical phenotypes of primary ciliary dyskinesia, including hydrocephalus, situs inversus, and abnormal motility of trachea cilia and sperm flagella. Strikingly, both males and females are viable and fertile, indicating that calaxin is not essential for fertilization in mice. The 9 + 2 axonemal structures of epithelial multicilia and sperm flagella are normal, but the formation of 9 + 0 nodal cilia is significantly disrupted. Knockout of calaxin in zebrafish also causes situs inversus due to the irregular ciliary beating of Kupffer's vesicle cilia, although the 9 + 2 axonemal structure appears to remain normal.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Cílios/metabolismo , Proteínas do Citoesqueleto/deficiência , Proteínas de Peixe-Zebra/deficiência , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Proteínas de Ligação ao Cálcio/genética , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/metabolismo , Proteínas do Citoesqueleto/genética , Epêndima/metabolismo , Epêndima/ultraestrutura , Flagelos/metabolismo , Flagelos/ultraestrutura , Camundongos Endogâmicos C57BL , Movimento/fisiologia , Traqueia/metabolismo , Traqueia/ultraestrutura , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Proc Natl Acad Sci U S A ; 116(13): 6351-6360, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850532

RESUMO

Leishmania kinetoplastid parasites infect millions of people worldwide and have a distinct cellular architecture depending on location in the host or vector and specific pathogenicity functions. An invagination of the cell body membrane at the base of the flagellum, the flagellar pocket (FP), is an iconic kinetoplastid feature, and is central to processes that are critical for Leishmania pathogenicity. The Leishmania FP has a bulbous region posterior to the FP collar and a distal neck region where the FP membrane surrounds the flagellum more closely. The flagellum is attached to one side of the FP neck by the short flagellum attachment zone (FAZ). We addressed whether targeting the FAZ affects FP shape and its function as a platform for host-parasite interactions. Deletion of the FAZ protein, FAZ5, clearly altered FP architecture and had a modest effect in endocytosis but did not compromise cell proliferation in culture. However, FAZ5 deletion had a dramatic impact in vivo: Mutants were unable to develop late-stage infections in sand flies, and parasite burdens in mice were reduced by >97%. Our work demonstrates the importance of the FAZ for FP function and architecture. Moreover, we show that deletion of a single FAZ protein can have a large impact on parasite development and pathogenicity.


Assuntos
Cílios/fisiologia , Flagelos/fisiologia , Leishmania/fisiologia , Leishmania/patogenicidade , Psychodidae/parasitologia , Animais , Membrana Celular/metabolismo , Cílios/genética , Cílios/ultraestrutura , Endocitose , Flagelos/genética , Flagelos/ultraestrutura , Deleção de Genes , Interações Hospedeiro-Parasita , Junções Intercelulares , Leishmania/genética , Leishmania/ultraestrutura , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Virulência/genética
10.
Biol Open ; 8(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30700402

RESUMO

A haptonema is an elongated microtubule-based motile organelle uniquely present in haptophytes. The most notable and rapid movement of a haptonema is 'coiling', which occurs within a few milliseconds following mechanical stimulation in an unknown motor-independent mechanism. Here, we analyzed the coiling process in detail by high-speed filming and showed that haptonema coiling was initiated by left-handed twisting of the haptonema, followed by writhing to form a helix from the distal tip. On recovery from a mechanical stimulus, the helix slowly uncoiled from the proximal region. Electron microscopy showed that the seven microtubules in a haptonema were arranged mostly in parallel but that one of the microtubules often wound around the others in the extended state. A microtubule stabilizer, paclitaxel, inhibited coiling and induced right-handed twisting of the haptonema in the absence of Ca2+, suggesting changes in the mechanical properties of microtubules. Addition of Ca2+ resulted in the conversion of haptonematal twist into the planar bends near the proximal region. These results indicate that switching microtubule conformation, possibly with the aid of Ca2+-binding microtubule-associated proteins is responsible for rapid haptonematal coiling.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29899229

RESUMO

Mercury is a neurotoxin, with certain organic forms of the element being particularly harmful to humans. The Minamata Convention was adopted to reduce the intentional use and emission of mercury. Because mercury is an element, it cannot be decomposed. Mercury-containing products and mercury used for various processes will eventually enter the waste stream, and landfill sites will become a mercury sink. While landfill sites can be a source of mercury pollution, the behavior of mercury in solid waste within a landfill site is still not fully understood. The purpose of this study was to determine the depth profile of mercury, the levels of methyl mercury (MeHg), and the factors controlling methylation in an old landfill site that received waste for over 30 years. Three sampling cores were selected, and boring sampling was conducted to a maximum depth of 18 m, which reached the bottom layer of the landfill. Total mercury (THg) and MeHg were measured in the samples to determine the characteristics of mercury at different depths. Bacterial species were identified by 16S rRNA amplification and sequencing, because the methylation process is promoted by a series of genes. It was found that the THg concentration was 19⁻975 ng/g, with a geometric mean of 298 ng/g, which was slightly less than the 400 ng/g concentration recorded 30 years previously. In some samples, MeHg accounted for up to 15⁻20% of THg, which is far greater than the general level in soils and sediments, although the source of MeHg was unclear. The genetic data indicated that hgcA was present mostly in the upper and lower layers of the three cores, merA was almost as much as hgcA, while the level of merB was hundreds of times less than those of the other two genes. A significant correlation was found between THg and MeHg, as well as between MeHg and MeHg/THg. In addition, a negative correlation was found between THg and merA. The coexistence of the three genes indicated that both methylation and demethylation processes could occur, but the lack of merB was a barrier for demethylation.


Assuntos
Mercúrio/análise , Mercúrio/química , Compostos de Metilmercúrio/análise , Instalações de Eliminação de Resíduos/estatística & dados numéricos , Monitoramento Ambiental , Poluição Ambiental , Japão , Metilação , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...